371 research outputs found

    The Current State of Normative Agent-Based Systems

    Get PDF
    Recent years have seen an increase in the application of ideas from the social sciences to computational systems. Nowhere has this been more pronounced than in the domain of multiagent systems. Because multiagent systems are composed of multiple individual agents interacting with each other many parallels can be drawn to human and animal societies. One of the main challenges currently faced in multiagent systems research is that of social control. In particular, how can open multiagent systems be configured and organized given their constantly changing structure? One leading solution is to employ the use of social norms. In human societies, social norms are essential to regulation, coordination, and cooperation. The current trend of thinking is that these same principles can be applied to agent societies, of which multiagent systems are one type. In this article, we provide an introduction to and present a holistic viewpoint of the state of normative computing (computational solutions that employ ideas based on social norms.) To accomplish this, we (1) introduce social norms and their application to agent-based systems; (2) identify and describe a normative process abstracted from the existing research; and (3) discuss future directions for research in normative multiagent computing. The intent of this paper is to introduce new researchers to the ideas that underlie normative computing and survey the existing state of the art, as well as provide direction for future research.Norms, Normative Agents, Agents, Agent-Based System, Agent-Based Simulation, Agent-Based Modeling

    Mars digital terrain model

    Get PDF
    The Mars Digital Terrain Model (DTM) is the result of a new project to: (1) digitize the series of 1:2,000,000-scale topographic maps of Mars, which are being derived photogrammetically under a separate project, and (2) reformat the digital contour information into rasters of elevation that can be readily registered with the Digital Image Model (DIM) of Mars. Derivation of DTM's involves interpolation of elevation values into 1/64-degree resolution and transformation of them to a sinusoidal equal-area projection. Digital data are produced in blocks corresponding with the coordinates of the original 1:2,000,000-scale maps, i.e., the dimensions of each block in the equatorial belt are 22.5 deg of longitude and 15 deg of latitude. This DTM is not only compatible with the DIM, but it can also be registered with other data such as geologic units or gravity. It will be the most comprehensive record of topographic information yet compiled for the Martian surface. Once the DTM's are established, any enhancement of Mars topographic information made with updated data, such as data from the planned Mars Observer Mission, will be by mathematical transformation of the DTM's, eliminating the need for recompilation

    Triangulation using synthetic aperture radar images

    Get PDF
    For the extraction of topographic information about Venus from stereoradar images obtained from the Magellan Mission, a Synthetic Aperture Radar (SAR) compilation system was developed on analytical stereoplotters. The system software was extensively tested by using stereoradar images from various spacecraft and airborne radar systems, including Seasat, SIR-B, ERIM XCL, and STAR-1. Stereomodeling from radar images was proven feasible, and development is on a correct approach. During testing, the software was enhanced and modified to obtain more flexibility and better precision. Triangulation software for establishing control points by using SAR images was also developed through a joint effort with the Defense Mapping Agency. The SAR triangulation system comprises four main programs, TRIDATA, MODDATA, TRISAR, and SHEAR. The first two programs are used to sort and update the data; the third program, the main one, performs iterative statistical adjustment; and the fourth program analyzes the results. Also, input are flight data and data from the Global Positioning System and Inertial System (navigation information). The SAR triangulation system was tested with six strips of STAR-1 radar images on a VAX-750 computer. Each strip contains images of 10 minutes flight time (equivalent to a ground distance of 73.5 km); the images cover a ground width of 22.5 km. All images were collected from the same side. With an input of 44 primary control points, 441 ground control points were produced. The adjustment process converged after eight iterations. With a 6-m/pixel resolution of the radar images, the triangulation adjustment has an average standard elevation error of 81 m. Development of Magellan radargrammetry will be continued to convert both SAR compilation and triangulation systems into digital form

    A compilation system for Venus radar mission (Magellan)

    Get PDF
    A synthetic aperture radar (SAR) compilation system was developed for extraction of topographic information of Venus from stereoradar imagery to be obtained from the Magellan mission. The system was developed for an AS-11AM analytical stereoplotter. Extensive tests were made on this compilation software by using stereo images from various radar systems, both spaceborne and airborne. Maps were compiled and the precision of planimetry and contour measurement was evaluated. Digital data of some models were also collected for processing orthophoto or perspective views by using the original radar images

    Color-coded global topographic map of Mars

    Get PDF
    A Digital Terrain Model (DTM) was derived with both Mercator and Sinusoidal Equal-area projections from the global topographic map of Mars at a scale of 1:15 million and a contour interval of 1 km. Elevations on the map are referred to the Mars topographic datum that is defined by the gravity field at a 6.1-millibar pressure surface with respect to the center of mass of Mars. The DTM has a resolution at the equator of 1/59.226 degrees (exactly 1 km) per pixel. By using the DTM, color-coded global maps of Mars' topography were generated in both the Mercator projection and the Sinusoidal Equal-Area projection. On both maps, colors indicate 1 km increments of height. From the equal-are dataset, the positive and negative elevation distributions are calculated to be 67 and 33 percent, respectively

    Mars elevation distribution

    Get PDF
    A Digital Terrain Model (DTM) of Mars was derived with both Mercator and Sinusoidal Equal-Area projections from the global topographic map of Mars (scale 1:15 million, contour interval 1 km). Elevations on the map are referred to Mars' topographic datum that is defined by the gravity field at a 6.1-millibar pressure surface with respect to the center of mass of Mars. The DTM has a resolution at the equator of 1/59.226 degrees (exactly 1 km) per pixel. By using the DTM, the volumetric distribution of Mars topography above and below the datum has previously been calculated. Three types of elevation distributions of Mars' topography were calculated from the same DTM: (1) the frequency distribution of elevations at the pixel resolution; (2) average elevations in increments of 6 degrees in both longitude and latitude; and (3) average elevations in 36 separate blocks, each covering 30 degrees of latitude and 60 degrees of longitude

    Interactions of the Infrared bubble N4 with the surroundings

    Full text link
    The physical mechanisms that induce the transformation of a certain mass of gas in new stars are far from being well understood. Infrared bubbles associated with HII regions have been considered to be good samples of investigating triggered star formation. In this paper we report on the investigation of the dust properties of the infrared bubble N4 around the HII region G11.898+0.747, analyzing its interaction with its surroundings and star formation histories therein, with the aim of determining the possibility of star formation triggered by the expansion of the bubble. Using Herschel PACS and SPIRE images with a wide wavelength coverage, we reveal the dust properties over the entire bubble. Meanwhile, we are able to identify six dust clumps surrounding the bubble, with a mean size of 0.50 pc, temperature of about 22 K, mean column density of 1.7 Ɨ1022\times10^{22} cmāˆ’2^{-2}, mean volume density of about 4.4 Ɨ104\times10^{4} cmāˆ’3^{-3}, and a mean mass of 320 MāŠ™M_{\odot}. In addition, from PAH emission seen at 8 Ī¼\mum, free-free emission detected at 20 cm and a probability density function in special regions, we could identify clear signatures of the influence of the HII region on the surroundings. There are hints of star formation, though further investigation is required to demonstrate that N4 is the triggering source.Comment: Accepted by ApJ (16 pages, 11 figures, 9 tables
    • ā€¦
    corecore